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THE METHOD OF DISCRETE SINGULARITIES IN PLANE PROBLEMS OF 
THE THEORY OF ELASTICITY WITH NON-SMOOTH BOUNDARIES* 

S.M. BELOTSEBKOVSKII, I.K. LIFANOV and M.M. SOLDATOV 

The numerical solution of a class of elasticity-theory problems that is 

broader compared with that considered earlier in /l-3/ is investigated, 

namely, plane problems with non-smooth boundaries by the method of 

discrete singularities (MDS). The MDS is the direction of numerical 

solution of boundary value problems that is substantially the Tikhonov 

regularization method /4/ based on boundary singular integral equations 

(SIE). It is best to combine the MDS with the method of finite elements 

in computations of geometrically complex objects when the solution for 

the low level superelements is obtained by using the MDS. 

The MDS includes the reduction of the problem to SIE, the parametric 

assignment of the contour, the investigation of the SIE properties, 

smoothing of the SIE kernels, extraction of the unique SIE solution, 

justification of the selection of two matched systems of points on the 

contour, passage from SIE to a system of linear algebraic equations and 

assurance of its determinancy and non-degeneracy, analysis of the con- 

vergence of the solution, and the application of quadrature formulas for 

Cauchy-type integrals. 

An elastic isotropic homogeneous medium is considered that occupies 

a simply-connected domain D with a piecewise-smooth closed contour r on 

a plane. The solution of plane elasticity theory problems in a known 

way /5, 6/ is reduced to determining two analytic functions, q.$, say. 

The non-smoothness of the boundary influences the realization of the 

MDS, however, the essence of the method is conserved. The purpose of the 

paper being published is to study and give a foundation for what is new 

in the MDS for plane elasticity theory problems with non-smooth boundaries 

as compared with the smooth boundary case in question. 

1. To reduce two fundamental problems (in displacements and stresses) to SIE to the first 

kind, it was proposed /2/ to represent the analytic functions 'p and 9 in terms of one complex 
function 0 in the following form (L is a smooth contour) 

The derivative was calculated from (1.1) by means of the formula 

(1.2) 

obtained from (1.1) after differentiation with respect to z and integration by parts, for the 

derivation of the SIE from the boundary condition /5, 6/. 

non-smooth boundaries the function o(Z) may turn out to be 

W'(r) does not exist. Then the derivative q'(z) must be 
function 0 (r) 

cp’ (2) = &- s +%$dr 

We formulate the following problem: it is required to obtain the SIE for the function o 

However, in certain problems with 

such that the integral (1.2) of 

evaluated as the integral of the 

(1.3) 

from the boundary condition irrespective of whether the derivative rp'(z) is calculated by 
(1.2) or (1.3). 

From the boundary condition of the problem and (1.1) and (1.2) we arrive at a SIE of the 
first kind /2/ on the contour I' if the relationship (1.2) is true for it 
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(1.4) 

and we also arrive at the SIE (1.4) with c = xk from (1.3) and relationships /7/ analogous 
to (1.1) 

(1.5) 

Indeed, we determine the limit values (p*(t) of the function q(z) at the arbitrary point 

tar /S/ 

cp*(r)=a*w(t)+~p&z; &I-& a a-=-z 
r 

(1.6) 

where the plus and minus superscripts correspond to D + (the internal problem) and D- (the 
external problem). 

In the usual way /9/ we determine the right (left) tangential vector with origin at the 

arbitrary point t of the contour r as the limit position of the secant for the neighbourhood 

(t, t + At) (for the neighbourhood (t - At, t)) of the contour I? traversed positively and as 
At + 0. Then a is the angle between the right and left tangential vectors defined counter- 

clockwise. For smooth points of the contour I? we have a = 51 for angular points of the 
contour cf E 10, nlUln, 2nI, and for reentry points cc = 0, 2n for the cusp directed, respectively, 
to the right or left for a positive traversal of r for which the domain D remains on the 
left. 

As in (1.6) we find the limit value Mcp' (1) + II, @)I+ of the functions G-@+llro 

-- 
[trf’ (t) + lji @)I’ = ca*o (t) - 

1 
-C 

2ni IlC 
-O(Z)& + -O(')&- (T - t) 0 (7) & 

I? 
T--r‘ s r--i 

r 
s - 1 r (F-F)1 

and from the boundary condition for the two fundamental problems (k = 1, 2) 

WP (t) - $-N(t)- q(t)= fk (t) 

taking (1.6) and (1.7) into account, we arrive at a SIE for the complex function o (t) 

(1.7) 

(1.8) 

(1.9) 

(the notation is the same as in /l-3, 7/). For C =xk the SIE (1.9) reduces to the SIE (1.4). 

2. Let us examine the properties of the SIE (1.4). Its eigenfunctions depend on nt and 

have been studied earlier /2/. Thus, for k = 1 a complex constant is the eigenfunction of 
(1.4) and for k = 2, the function iat in addition, where a is a real constant. 

To investigate the properties of the kernel of the SIE (1.4) we change to a new in- 

tegration variable whose differential is a continuous function on r. We can take as such, 

say, the parameter q of the mutually single-valued parametric assignment of the contour r 

x = r(q), Y = Y Gl), q E IO, 2nl ,(2.1) 

where x h), Y (q) and their derivatives with respect to 1 are 2n periodic functions. The 

contour r is closed, therefore, the kernels of the SIE (1.4) are periodic functions. Taking 

this into account, we extract the singularity from the singular kernel A0 of the SIE (1.4) 

in the form of a sum of a Hilbert kernel and a periodic function A (q,g) whose regularity 

is proved /2/ for a Lyapunov contour L (the derivatives with respect to q are denoted by 

primes) 

rl, 5 E LO, 2n1, T = 5 + iy, t = 220 + iyo, zo = x (E), y, = Y(E) 
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Bere 

A (11, E) = f [~‘a (11. E) + y’b (07 E)l + 

ctg q--f 2 [ -+( 
5'50' + y'yo') - 1 1 

a (11, E) = 32 - 50 - x0’ sin (q - f), b (q, 5) = Y - YO - 
Y,’ sin (rl - E) 

9 = (5 - x0)2 + (y - Y#, 
ro2 = r2 sin-2 ? - ’ 

2 

(2.3) 

For q = 5 the function A (q,E) is obtained from (2.3) by passing to the limit 

A (11, q) = (X'S" + Y'Y")/S'z = (x" cos p + Y"sin fi)/s' = 

s”/S’ 

S’ = 1/x’Z + y’2, s” = (x‘xV + y’y”)/S’ 

(2.4) 

(2.5) 

where p is the slope of the tangent to I' at the point q. 

We write the SIE (1.4) taking (2.2) into account 

B (q, 5) = AI h, E) + iAa h 5) 
A, (q, E) = 4r-4 (z - xo) (y - yo) Ix’ (y - yo) - Y’ (x - x0)1 

A, (q, E) = -2ro-4 [(x - x# - (y - yo)‘1 h’ (Y - Yo) - 

Y' (x - %)I 

(2.6) 

(2.7) 

After passing to the limit and taking account of (2.5) we obtain from (2.7) for q= 5 

B (11, q) = iei2S (y" cos fi - .z" sin fi)/S' = iKS’eias (2.8) 

where K is the curvature of the contour I' at a point with parameter 11. 

Writing the SIE (1.4) in the form (2.6) shows the kind of SIE being investigated (with 

singular kernel ctgq) and separates two functions A (q, E) and B (q, 5) on which the non- 

smoothness of the contour r has an influence. 

We determine & as the class of curves L for which x",y" are functions of the class H 

/8/ and S’+ 0. If the contour LE A,, then the functions A (11. 5) and B(q, E) in (2.6) are 

of class H /l/. 

If 

r = ij L1, LlE.% 
1==1 

and there are angular points of reentry points qi on r (i.e., points at which the direction 

of the tangential vector undergoes a discontinuity of the first kind): fi(qi + 0)= fir+; p(qi - 
0) = f3i- and pi+ # pi-), then the functions A (11, E),B (q, E) can have discontinuities of'the first 

kind because of the derivatives x',Y' according to (2.3) and (2.7). For q = q1 = 5 the nature 
of the discontinuity of the function B(q, q) will be determined, in conformity with (2.81, 

by values of the limits to the left and right at the point qi of the curvature 

K = (x'y" - y'x")/s'3 

of the curve r and the limit values of the angle p. And according to (2.4), the nature of 

the discontinuity of the function A (q,q) is determined by the limit values of the ratio S”IS’. 
We shall consider the contour r with those singularities whose presence under the allowed 

parametric assignment of the contour (S'f 0) results in discontinuities of the functions 
A (11, E) and B(q, 5) of only the first kind. Then the solution of the SIE (2.6) is the function 

(0 (11) which can have not more than a logarithmic singularity /8, lO/ at these points. 
This same assertion holds for those pints of r at which the right side of the SIE (2.6) 

has a discontinuity of the first kind, and the functions A (q,E),B(q,E) are continuous. If 
both the right side of the SIE (2.6) and the functions ,A (7), E), B(q,U, simultaneously undergo 

a discontinuity of the first kind at a point of the contour I? then prediction of the behaviour 
of the solution of the SIE requires additional investigation. 

The real and imaginary parts of the SIE (2.6) yield a system of SIE in the functions 



222 

(2.9) 

We note that both smooth and unsmooth right-hand sides are possible in the system SIE 

(2.9). For instance, for problems in stresses (!i=2) /2/, the functions fzl,f2R generally 

have discontinuities of the first kind at those points of the contour L where the concentrated 

loads are applied. In the absence of these concentrated loads the functions f21,f2R are 
continuous at all points of the contour r. 

3. Extraction of the unique solution of the SIE (1.4) in the case of a smooth contour L 

was achieved /2, 9/ by introducing additional integral conditions whose purpose was to "reduce" 

the SIE by using integral conditions with a spectrum. A numerical comparison was performed 
/ll/ between this and the traditional /E, 12/ approaches in which the solvability of the SIE 
was achieved because of the inclusion of additional components. The advantages of the 
additional conditions is shown in /11/ since the effectiveness of the additional components, 

associated mainly with an error in the calculations, drops abruptly as the order n of the 
system of linear algebraic equations corresponding to the SIE being solved numerically, 

incrases. 
The integral conditions "reducing" the SIE with a spectrum can be written as before /l-3/ 

as well as in the form 

where dS is the length element of the contour r. The first equation in (3.1) "does not pass" 

the proper solution of the SIE (1.4), which equals a complex constant, but the second is iat 
where a is a real constant. 

If 0 (T) is a continuous function, the integrands in (3.1) have no discontinuities at 

angular points of the contour P. This is indeed the advantage of conditions (3.1) as compared 

with the conditions proposed earlier in /l-3/ whose integrandscanhave di&ontinuities of the 

first kind in the case of a non-smooth contour P. 

The introduction of conditions (3.1) assumes that non-smoothness of the contour 1‘ does 

not influence the eigenfunctions of the SIE (1.4). This assumption is later Verified numeri- 

cally for the solution of specific problems. 

4. The passage from the SIE to a system of algebraic equations requires additional 

constraints on the selection of the two matched systems of the point ni and Ylj on the 

contour r. These constraints are a generalization of the assertion formulated earlier /2/ 

that design points (DP) Ej should be placed at points of discontinuity of the first kind of 

the right side of (1.4) (or (2.9)), while the value of the right side is taken equal to half 

the sum of its limits on the left and right of this point. 

Indeed, we extract the Hilbert kernel in the SIE (1.4) /2, lo/. It is known for it /13/ 

that if the density cp(q) is expanded in a Fourier series 

cPPp=$-+ (ak cos kq + b, sin kq), v bl) cz L* [O, zn1 
x=1 

then 

(- ak sill kc + b, cos kS) = f (E) 
11=1 

(4.1) 

{4.2) 

The series obtained is a Fourier series for the function f(E), and consequently, if f(E) 

has a discontinuity E. of the first kind, then 

I(%o) = I/* [f (50 - 0) + f (Eo + WI (4.3) 

since by passing to the limit as n-m in the equation 

2sn (q) drl = S,,(f) 
” 
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where Sn (cp) is a partial sum of the series (4.11, we obtain (4.3) by virtue of the boundedness 
of this operator in L,[O,2nl. Hence, the analogous assertion follows for the SIE (1.41 with 
the regular part, i.e., 

14.4) 

where to is a point of discontinuity of the first kind for the right side of the SIE (1.4). 
It follows from (4.4) that the left side of the SIE takes on a strictly definite value 

at the point 1,. This is taken into account in the numerical solution when going over from 
the SIE to the discrete analogue so that t, is called a PT (a collocation point1 of the SIE 
(1.4). 

As the total number n of PT changes on the contour r the PT at the points of discontinuity 
of the first kind on the right side of (1.4) are conserved and will be called fixed PT, unlike 
the other PT. 

As is usual /l, 2/,' two matched systems of points pi and El are used when going over from 
the SIE to the discrete analogue. Investigations executed numerically for the solutions of 
specific problems enabled us to establish that angular points of the contour r must be taken 
as fixed PT (see the explanation in Sect.7). Other versions of the selection of the points 

?i* Ej result is substantial perturbations of the SIE solution in the neighbourhoods of the 
singularities, as a rule. This result was verified in problems in which it is known that the 
solution in stresses has no perturbations near angular points of I', for instance, in the case 
of the internal problem k = 2 about the multilateral uniform tension of a rectangular domain 
D. 

Thus, on going over to the discrete analogue of the SIE, fixed PT should be fixed at the 
angular points of the contour r and points of discontinuity of the first kind of the right 
side of the SIE (1.4). The location of the fixed PT governs the greatest possible partition 
spacing (or the minimum number of points) on the contour r when constructing two matched 
systems of points ni and Ej equidistant in the assignment parameter of the contour r . We 
note that the distribution of the points nj, sj on the contour r can turn out to be sub- 
stantially non-uniform. 

5. The transfer from the SIE (1.4) and the integral conditions (3.1) toa system of 
algebraic equations in problems on a non-smooth simply-connected contour r (r = L, -+-...+ L,,, 
L[ e A,, 1 = 1, . . ., m) is made after partitioning the integrals over r in (1.4) and (3.1) into 
a sum of integrals over &. This is preceded by partitioning of the domain of definition of 
the variables n, 5 belonging to the segment [O, 2n1, into m sections, in proportion to the 
curve lengths L,, say, and selecting the partitioning step on each of the sections taking the 
presence of fixed PT on the contour r taken into account. Consequently, we go from (2.9) and 
(3.1) over to a system of linear algebraic equations (summation over i from 1 to n) 

Z[%n (tli)(2xk-40 + Al)+ oln (%)-421aij + 

PI I- (k - 1) BS COS Ej = - 2nfkl (Ej) 
(5.1) 

The quantities afj are determined by quadrature formulas /l/ depending on the selection 
of the distribution law of the two matched systems of points niq Sj on the contour r; for 
nf~ 6 distributions with a constant step along r we have 

The unknowns I%, BP, h, as indeed in the case of the smooth contour L /l-3/, are regulariz- 
ing factors and are introduced to explain the detenninacy of system (5.1) in which the number 
of equations N = 2~2 + 3 equals the number of unknown values of the functions on. wz at n 
points each plus the three unknown constants fir, &,&. The last three unknowns tend to zero 
as n--Jo /2/. 

6. Convergence of the solution of system (5.1) of order N to the solution of the SIE 
(1.4) with conditions (3.1) follows from the proof in /I/ and the application of formulas of 
the rectangle type to evaluate the Cauchy-type integral 
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(6.1) 

over a closed contour L, where rl, te are two matched mutually alternating systems of points 
on the contour L obtained there by using a uniform partition over the parameter for parametric 
assignment of the contour L. If L is here a smooth closed contour and the function w (?) ,G 
H (a) on L (Holder type), then convergence of the integral (6.1) is uniform of the type 
0 (In nina); if L = r has an angle or the function W(t) has discontinuities of the first kind, 
then convergence of the integral (6.1) is uniform of the same type outside the neighbourhood 
of the angles and integral, as a whole, on the whole contour r /l/. 

Satisfaction of the integral convergence of the solution of system (5.1) for problems 
h. :: 2 means, in particular, convergence in N determinable stresses at all points of the 
domain D and uniform converqence in r outside neighbourhoods of angles means convergence in 
N determinable streses in D U r outside the neiqhbourhoods of the angles. Calculation of 

the stresses in the neighbourhoods of the angles requires uniform convergence of the numerical 
solution of the SIE in the neighbourhood of the angles of the contour I'. 

7. We call smoothing of the kernels A and B of the SIE (2.6) the elimination of dis- 
continuities of the first kind. 

A method is proposed for smoothing the kernels A and B of the SIE (2.6) that is based 
on elimination of discontinuities of the first kind, determined from (2.3) and (2.7) for 
'f# g. At the same time, in conformity with (2.4) and (2.8), in the general case discontinuities 
remain for %l= E. However, according to (2.4) the value of the function is A (n, n)= 8 in 
the angle formed by arcs of circles when they are parametrized in the form z= Rcosq, y = R 
sin 11. And the value of the function B(q,q) is zero, according to (2.8), in the angle 
formed by straight lines since the curvature is k'= 0 there. In the cases mentioned the 
functions A (~,~),B(~,~) have no discontinuities of the first kind at angular points of r. 

The proposed smoothing of the kernels A,B is achieved for 11 #E by the special 
selection of the parametric assignment of the contour r and the two matched systems of points 
on it. 

The contour r can be given parametrically by both a single law along its whole length 
and by different laws, for instance by its parametric equations z= z(n),r/ = y(q) on each curve 
L If such a parametric assignment of the contour r is found, then as before, two matched, 
s;;teins of points r)i+ 5, equidistant in the assignment parameter for the contour r are given 
which are used according to the method of discrete singularities to find the numerical solution 
of the SIB that can possess uniform convergence everywhere in r as computations show. 

we consider the example of the parametric assignment of the contour r in the form of 
power series in the roots of a Chebyshev polynomial of the first kind. 

On the curve LI ~‘1~ let the parameter be 9~ (III,v~+~) while the coordinate I- 21 varies 
between a and b. Then the coordinate XI(~) of the curve LI can be given parametrically in 
a linear approximation in the form 

(7.1) 

It hence follows that 

n-t_ b a--b q--‘li 
cc1 (q) = 2 i - ’ 2 cos Q. '101 =-n %+1- 'li 

The argument of the cosine in (7.2) varies between 0 and n. on Lt. If the discrete 
points 'lo are subject to the condition 

.(T.Z) 

2i - 1 
'loi = 2nn, i=l,...,n 

then these will be roots of the Chebyshev polynomial Tn(z& of the first kind (.Qi = cos rioi), 

where 8' (W)# 0 if a fixed design point is at the angular point. 
On approximating the curve LI at kfl points for the parametric assignment of the 

coordinate *g(q) we obtain in place of (7.1) 

where'all the Cfrn are determined underthecondition that its value of the parameter '1 
corresponds to each ki-1 point of LL. For example, a change in '1 along LI in proportion 
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to the length of a section of LI during traversal Of T from the point Z,(IV) to the point 

51 (rl) satisfies this. 
Parametric assignment of the contour T by means of (7.1) and (7.3) (the coordinate y 

is analogous to 5) ensures equality of the limits of the first derivatives z'(q), Y'(q) from 

the left and right at all angular points of the contour I? since for all LI the equalities 

zl'('IJ =x1' @lr+J = Y{ (rlJ = Yr'(%+J =0 (7.4) 

will be satisfied at the end points according to (7.3). 

Therefore, an example is thereby given for smoothing the kernels A,B for q#5. 

8. The desired characteristics on the contour T are determined in the problems under 

consideration by evaluation of Cauchy-type integrals by means of Kolosov-Muskhelishvili 

formulas /5, 6/. 
Following /9/, we agree not to give a definite value to the Cauchy-type integral over 

the complex contour T(f'= L,+...+L,) at singularities of T. A Cauchy-type integral at 

all smooth points, as well as its limits from the left and right at singularities of T, can 

be evaluated by the rectangle formula (6.1). The convergence of (6.1) is discussed in Sect.6. 

In addition, it should be noted that by approximating o in the evaluation of a Cauchy-type 

integral, the number of partition points of T can be taken to be substantially greater than 

n used in solving the SIE. Thus, for instance, n=iEi-460 in the problem considered while 

the number of points in evaluating Cauchy-type integrals by the rectangle formula could 

sufficiently be taken an order of magnitude higher. A further increase in the number of 

points (by two orders) would not change the value of the integral). This is also verified 

in solving other problems of the mechanics of a continuous medium /14/. 

The applicability of the trapezoid and Simpson formulas for the direct evaluation of 

Cauchy-type singular integrals should be noted.* (*Matveyev A.F., On selfregulation of the 
problem of evaluating singular integrals with Cauchy and Hilbert kernels in the metric C. 

Preprint 165, Inst. Theor. Exper. Physics, Moscow, 1982). Consequently, the main method of 

increasing the accuracy of their evaluation is to reduce the numerical integration step. 

Application of a formula obtained earlier /ll/ 

where z can approximate the design point on the circle L, is possible if the contour T is 

mapped on L. 

9. Calculations were performed for problems in stresses (k=2) with a rectangular domain 

D. In conformity with the discussion in Sect.3, it is established numerically that the 
homogeneous system (5.1) has just a trivial solution irrespective of the method of assigning 

the two allowable matched systems of points on the rectangular contour l?. 

The multilateral tension of a square with side h by a uniform load p applied along its 

sides, oriented along the coordinate axes, is examined as the first test problem. In this 
case the right sides of system (5.1) are continuous functions fzR and fzl that vary linearly. 
The dimensionless values of faR on the contour r, referred to ph, are shown in Fig.1. The 
graph of the function fzr is obtained by rotating the square with the graphs in Fig.1 counter- 
clockwise through an angle of n/2 

Fig.1 Fig.2 

Two different methods of giving the matched systems of points on the contour r were 
considered: for n=40 with a constant step on T (shown on the side DA in Fig-l), and by 
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roots of a Chebyshev polynomial of the first kind (shown on the side Al3 there). In both 
eases, design points denoted by crosses are placed at the angles of the contour F, discrete 
singularities denoted by points are between the PT. 

The solution of (5.1) for ~a,_e~,~ for ~=40 is presented in Fig.2 for wx (for 't>i the 
solution is obtained by rotation of ofi counter-clockwise through x12) by dashed lines for 
the first method of assigning the matched systems of points and by the solid line for the 
second method. 

The function on is symmetric relative to the E axis and antisymmetric with respect to 
the y axis while the function oI possesses the opposite properties. All the assertions of 
Sect.6 relative to the convergence of the solution and the efficiency of smoothing the SIE 
kernels are confirmed by the graph in Fig.2. 

Analysis of the stresses at all points of the square, on its sides, and at the corners 
by the solution at a system of points given by the second method is ensured with an error not 
greater than 1% for n= 40 and is executed according to Sect.8. 

It is proved that the solution of a analogous external problem for a rectanglar hole 
loaded homogeneously along the contour P or at infinity reduces to the solution of the SIE 
(1.4) with right side corresponding to the internal problem (see Fig.l), i.e., the solution 

e&r Ol?l agrees with the solution in Fig.2. The stresses on the contour in these cases are 
determined by two functions f2n1 (t),Rea;'-(t) and have discontinuities of the first kind at 
angular points. 
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